FLUID IDENTIFICATION IN OVERPRESSURED LOW POROSITY SHALY SANDSTONE RESERVOIRS

BY:
KO KO KYI
NORFADILAH YAHAYA
PETRONAS CARIGALI SDN. BHD.
OBJECTIVE

To identify reservoir fluid type based on wireline logs and incorporating all available well data such as formation pressure, mudlogs and well test results.
<table>
<thead>
<tr>
<th>INTRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reservoir fluid identification plays a crucial role in reservoir characterization and hydrocarbon volume estimation.</td>
</tr>
<tr>
<td>• In thick, porous and clean reservoirs, the process of fluid identification is straightforward.</td>
</tr>
<tr>
<td>• In overpressured, low porosity and shaly sandstone reservoirs, it becomes difficult to definitively identify the type of formation fluid in the reservoir of interest.</td>
</tr>
</tbody>
</table>
INTRODUCTION

• Petrophysicists and log analysts use the bulk density and neutron porosity logs in combination together with resistivity logs, to identify reservoir fluid type.

• Formation pressure gradients, obtained from wireline formation tester (WFT) tools, have greatly helped in identifying fluid types.

• In overpressured reservoirs, sometimes it is difficult to establish reliable pressure trends and gradients.
• In shaly reservoirs, the typical gas crossover effect on the density and neutron logs becomes either less pronounced or absent in some cases.

• As shaliness of the formation affects most well logs, fluid identification based on well logs alone becomes unreliable.

• An integrated approach is applied to identify fluid type in overpressured tight shaly sandstone reservoir in a field offshore Malaysia namely Well “A”, Well “B” & Well “C”
Overpressure range from 500-1200 psia
EXAMPLE FROM WELL “A”
Drilling Data
Circulation before logging = 17 hrs

WELL "A"

WELL A

SAND (1)

SAND (2)

SAND (1)

SAND (2)

Drilling Data

Circulation before logging = 17 hrs

WELL "A"

2148 2150 2175 2225 2275 2325 2375 2425

2198 2200 2248 2275 2325 2375 2425

SAND (1)

SAND (2)

1940-1955 MD
2190-2207 MD

Linear (Normal Hydrostatic Line)
Drilling Data
Mud Weight (MW) = 10.5 ppg
WELL “A” SAND (1)
WELL “A” SAND (1)

Vp/Vs Versus DTc

- **Vp/Vs** (Poisson's ratio) versus **DTc** (time lapse) for different rock types and fluids.

- **Anhydrite**, **Limestone**, **Dolomite**, **Salt**, and **Quartz**.

- **Unconsolidated Sediments**, **Shales**, **Salty Water**, **Fresh Water**, **Gas**, and **Oil Sand**.

- **GOR** (Gas Oil Ratio) levels: 0, 500, 1000, 1500.

- **Porosity** levels: 10%, 20%, 30%, 40%.

- Depth range: 2190-2207 MD.
WELL “A” SAND (1)

MUD GAS RATIO
- Gas Wetness Ratio
 Wh = 21 (Potential Oil)
- Gas Balance Ratio
 Bh = 8 (Heavier Oil)
- Gas Character Ratio
 Ch = 0.7

DST RESULTS
- Gas = 10.04 MMscf/day
- Condensate = 520 stb/day
- CGR = 50 stb/MMscf
- API = 47.7
WELL “A” SAND (1) - RESULTS

<table>
<thead>
<tr>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs</td>
<td>Oil</td>
</tr>
<tr>
<td>Near Far Neutron</td>
<td>Oil</td>
</tr>
<tr>
<td>WFT</td>
<td>0.12 psi/ft</td>
</tr>
<tr>
<td>Vp/Vs</td>
<td>Gas</td>
</tr>
<tr>
<td>ND Crossplot</td>
<td>Gas</td>
</tr>
<tr>
<td>Carbon Number Ratio</td>
<td>Oil</td>
</tr>
<tr>
<td>Mud Gas Ratio</td>
<td>Oil</td>
</tr>
<tr>
<td>Well Test</td>
<td>Gas+Condensate</td>
</tr>
</tbody>
</table>

Interpreted fluid type: **Condensate**
WELL “A” SAND (2)

Drilling Data
Mud Weight (MW) = 12.5 ppg
WELL “A” SAND (2)

SST: Off wht, lt gy, occ lt olv gy
- lt brnsh gy, trnsp - trns, occ consl qtz gr, v f - fg, md -
sand, srt - tm, occ nd, mod -
wl srdc, non clc. pr vss por.
Weak show.

SHOW(2425-2438m): 5-10%
aptd pale yell DF, slw stmg dull blsh wht CF, no res ring.

MD: 2418.36m, TVD: 2418.6m
INCL: 0.35, AZI: 96.16

MD: 2448.35m, TVD: 2448.0m
INCL: 0.45, AZI: 20.15
COAL: Blk, fli, sbolky - blky, wdy lek.
WELL “A” SAND (1)

Vp/Vs Versus DTc

- Anhydrite
- Limestone
- Dolomite
- Salt
- Quartz
- 2428-2435 MD

Unconsolidated Sediments
Sodium Water
Salty Water
Fresh Water
Porosity
Gas Sand
Oil Sand
Gas
GOR

GOR

Color: Maximum of DEPTH

GOR
Carbon Number Ratios

MUD GAS RATIO
• Gas Wetness Ratio
 Wh = 25 (Potential Oil)
• Gas Balance Ratio
 Bh = 6 (Heavier Oil)
• Gas Character Ratio
 Ch = 0.7

DST RESULTS
Gas = 1.35 MMscf/day
Condensate = 67.52 stb/day
CGR = 50 stb/MMscf
API = 42.6
WELL “A” SAND (2) - RESULTS

<table>
<thead>
<tr>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs</td>
<td>Oil</td>
</tr>
<tr>
<td>Near Far Neutron</td>
<td>Gas</td>
</tr>
<tr>
<td>WFT</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>Vp/Vs</td>
<td>Gas</td>
</tr>
<tr>
<td>ND Crossplot</td>
<td>Gas</td>
</tr>
<tr>
<td>Carbon Number Ratio</td>
<td>Oil</td>
</tr>
<tr>
<td>Mud Gas Ratio</td>
<td>Oil</td>
</tr>
<tr>
<td>Well Test</td>
<td>Gas+Condensate</td>
</tr>
</tbody>
</table>

Interpreted fluid type: **Condensate**
EXAMPLE FROM WELL “B”
Drilling Data
Mud Weight (MW) = 10.2 ppg

Limited data available:
1. No MDT
2. No well test

Available data:
1. Logs
2. Mud gas reading
WELL "B" SAND (1)
WELL “B” SAND (1)

MUD GAS RATIO
• Gas Wetness Ratio
 Wh = 11 (Potential Gas)
• Gas Balance Ratio
 Bh = 144 (Very Dry Gas)
• Gas Character Ratio
 Ch = 0.08 (Gas)
<table>
<thead>
<tr>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs</td>
<td>Gas</td>
</tr>
<tr>
<td>Near Far Neutron</td>
<td>Gas</td>
</tr>
<tr>
<td>WFT</td>
<td>-</td>
</tr>
<tr>
<td>Vp/Vs</td>
<td>Gas</td>
</tr>
<tr>
<td>ND Crossplot</td>
<td>Gas</td>
</tr>
<tr>
<td>Carbon Number Ratio</td>
<td>Gas</td>
</tr>
<tr>
<td>Mud Gas Ratio</td>
<td>Gas</td>
</tr>
<tr>
<td>Well Test</td>
<td>-</td>
</tr>
</tbody>
</table>

Interpreted fluid type: **Gas**
EXAMPLE FROM WELL “C”
WELL “C” SAND (1)

Drilling Data
Mud Weight (MW) = 13.5 ppg
Circulation before logging = 18 hrs

WELL C

Pressure (psi)

TVDSS (m)
WELL “C” SAND (1)

SHOW (2007-2011m) : Tr - sptd 5-10%, wk, blsh wh, occ pl yel DF. Wk, milky wh, slw strmg CF. No res ring.

SHOW (2028-2031m, 2032-2035m) : Tr - sptd 5-10%, v wk - wk, pl wh, occ pl yel DF. Wk, milky wh, v slw - slw strmg CF. No res ring.
WELL “C” SAND (1)

Carbon Number Ratios

- **C1/C2**
- **C1/C3**
- **C1/C4**
- **C1/C5**

Expon. (Non Productive)

Expon. (Oil)

Expon. (Gas)

MUD GAS RATIO

- **Gas Wetness Ratio**
 \(Wh = 16 \) (Potential Oil)

- **Gas Balance Ratio**
 \(Bh = 12 \) (Gas/Oil/Condensate)

- **Gas Character Ratio**
 \(Ch = 0.24 \)

DST RESULTS

- **Gas** = 5.47 MMscf/day
- **Oil** = 6110 stb/day
- **GOR** = 895 scf/stb
- **API** = 33.2
WELL “C” SAND (1) - RESULTS

<table>
<thead>
<tr>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs</td>
<td>Oil</td>
</tr>
<tr>
<td>Near Far Neutron</td>
<td>Oil</td>
</tr>
<tr>
<td>WFT</td>
<td>0.24 psi/ft</td>
</tr>
<tr>
<td>Vp/Vs</td>
<td>Oil</td>
</tr>
<tr>
<td>ND Crossplot</td>
<td>Gas + Oil</td>
</tr>
<tr>
<td>Carbon Number Ratio</td>
<td>Oil</td>
</tr>
<tr>
<td>Mud Gas Ratio</td>
<td>Gas</td>
</tr>
<tr>
<td>Well Test</td>
<td>Oil</td>
</tr>
</tbody>
</table>

Interpreted fluid type: **Oil**
Drilling Data
Mud Weight (MW) = 13.6 ppg
Circulation before logging = hrs

WELL “C” SAND (2)
WELL “C” SAND (2)

Vp/Vs Versus DTc

- Anhydrite
- Limestone
- Dolomite
- Salt
- Quartz
- Water (2335-2345 MD)

Unconsolidated sediments
Saline Water
Fresh Water
Porosity
Gas
Oil Sand
Gas Sand
Unconsolidated sediments

GOR
Porosity

Color: Maximum of DEPTH

2300
2350
WELL “C” SAND (2) - RESULTS

<table>
<thead>
<tr>
<th>METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logs</td>
<td>Water</td>
</tr>
<tr>
<td>Near Far Neutron</td>
<td>Water</td>
</tr>
<tr>
<td>WFT</td>
<td>0.45 psi/ft</td>
</tr>
<tr>
<td>Vp/Vs</td>
<td>Water</td>
</tr>
<tr>
<td>ND Crossplot</td>
<td>Water</td>
</tr>
<tr>
<td>Carbon Number Ratio</td>
<td>-</td>
</tr>
<tr>
<td>Mud Gas Ratio</td>
<td>-</td>
</tr>
<tr>
<td>Well Test</td>
<td>-</td>
</tr>
</tbody>
</table>

Interpreted fluid type: **Water**
• All available data comprising mud logs, gas chromatography, gas wetness ratios, well logs, pressure and sample data used to identify the type of hydrocarbon in the reservoirs

• Interpreted fluid type confirmed by samples from wireline formation tester and well test results

• This methodology of integrating all available formation evaluation data has been implemented to successfully interpret data from subsequent wells in the nearby areas
ACKNOWLEDGEMENT

The authors wish to express their gratitude to the management of PETRONAS and PETRONAS Carigali Sdn. Bhd. for their permission to present this paper.